Decoding FOXG1 and IFF Research Strategy
How a gene is capitalized is important, it allows the reader to gain insight into exactly what the author is trying to say.

- FOXG1- refers to the gene and syndrome in humans
- Foxg1- refers to the gene and syndrome in mouse and rat animal models
- FOXG1 and Foxg1 *in italics*- refers to the proteins, not the gene itself
FOXG1 Syndrome – Phenotype (Visible Human Symptoms)

Microcephaly and Structural Brain Abnormalities
- Small head and partial or full loss of the corpus callosum (inhibiting communication of left and right brain)

Epilepsy/Seizures
- Infantile Spasms and life-threatening seizures resistant to drugs and surgical treatments that regress skills

Gross Motor/Fine Motor Delays
- Low muscle tone leads to little or no sitting, walking, talking or purposeful use of hands
- Strabismus, poor eye contact and Cortical Visual Impairment

Feeding Issues
- Low Muscle tone leads to gastroesophageal tract causing reflux, constipation
- Many individuals require feeding tube placement

Associated Conditions & Disorders
- Autism Spectrum Disorders (ASD)
- Sensory Processing Disorder (SPD)
- Movement disorders
FOXG1 Syndrome – History and Landscape

- FOXG1 gene discovered in 1995 by Dr. Alessandra Renieri, University of Siena, Italy
- Shown as cause of Congenital RETT/FOXG1 Syndrome in 2005
- Formerly called Congenital RETT Syndrome, has since been proven that FOXG1 Syndrome is a sister to RETT Syndrome and does not fall under the RETT umbrella
- Currently 280 cases reported worldwide.
 - This number steadily increasing as more children are tested for Autism Spectrum Disorder (ASD), and other genetic disorders.
What is FOXG1 and FOXG1 Syndrome? The Science
FOXG1 tells the Brain How to Develop

FOXG1 is one of the **earliest transcription factors** that gives rise to Telencephalon - where the cerebrum develops prenatally.

- Transcription factors are the set of instructions that bind DNA to regulate the expression of other genes.
- The Cerebrum is **What makes us human**. It is the largest and most important part of brain, controlling the central nervous system.
FoxG1 Genotype (Gene Mutation)

- Mutations, or 'pathogenic variants', are spelling errors that change the instruction, and impact how genes work.
- These variants have been observed in FOXG1 affected patients:

<table>
<thead>
<tr>
<th>Healthy</th>
<th>Deletion</th>
<th>Duplication</th>
<th>Missense</th>
<th>Frameshift</th>
</tr>
</thead>
<tbody>
<tr>
<td>A typical healthy gene</td>
<td>A part, or the entire gene is missing</td>
<td>A part, or the entire gene is duplicated</td>
<td>One copy has the wrong letter</td>
<td>Reading frame shifted</td>
</tr>
</tbody>
</table>

![Diagram showing healthy gene, deletion, duplication, missense, and frameshift variations.](image-url)
The FOXG1 gene encodes (gives instructions) to a protein called Forkhead box G1 (aka FOXG1 protein).

- Protein becomes *haploinsufficient*: prevents production of the FOXG1 protein and/or impairs the protein’s function
- These outcomes are referred to as **FOXG1 Syndrome**
The International FOXG1 Foundation is leading in cutting edge research to find a cure.
We are in a New Era of Scientific Discovery

Over the last five years, science has made massive strides

- We can safely deliver medicine to the brain through vectors (targeting a specific point)
- Technology exists to increase or decrease FOXG1 protein levels (saRNA and iRNA therapies)
- We are experimenting with CRISPR to edit genes (correct the root problem)
What IFF is funding research for

1. **Understand the Biological Impact of FOXG1**
 What neurons and cells are affected? What other genes are tied to FOXG1? How do different parts of the body react to different mutation types?

2. **Utilize Gene Therapies for Cures**
 Exploit existing gene therapies to better understand FOXG1 function, and to develop novel treatment strategies:
 - saRNA- and AAV-Foxg1-mediated approaches to boost protein expression
 - CRISPR/Cas9 editing as a tool to correct FOXG1 mutations in neurons
 - RNAi as a tool to silence dysfunctional protein

3. **Improve FOXG1 Symptoms**
 Identify biological pathways that can be modulated with existing compounds. Trial available drugs and hormones to improve symptoms.
<table>
<thead>
<tr>
<th>Ongoing FOXG1 research projects</th>
<th>Understand the Biological Impact of FOXG1</th>
<th>Utilize Gene Therapies for Cures</th>
<th>Improve FOXG1 Symptoms</th>
</tr>
</thead>
</table>
| **Boston Children’s Hospital** | Guangping Gao, PhD
Professor, Univ of Mass. Medical School
Develop patient-derived iPS neurons to characterize impact of FOXG1-disruption, and to provide a substrate for drug screening | Jeffrey Neul, MD, PhD
Professor, Univ of California, San Diego
Generate a Foxg1-deletion mouse model to characterize molecular, developmental, and behavioral outcomes of Foxg1 disruption and subsequent correction | Sandra Acosta-Verdugo, PhD
Post-Doctoral Fellow, Northwestern University
Functional characterization of FOXG1 regulatory elements to identify possible therapeutic targets |
| **Jeffrey Neul, MD, PhD**
Professor, Univ of California, San Diego | **Antonello Mallamaci, PhD**
Associate Professor, SISSA
Employ CRISPR/Cas9-mediated approach to correct FOXG1 mutations in iPS neurons and animal models, and characterize outcomes | **Robert Cilio, MD, PhD**
Director of Pediatric Epilepsy Research, UCSF
Generate patient-derived iPS cortical neurons to model morphologic and electrophysiologic sequelae of FOXG1 disruption, with special interest in cortical development | **Flora Vaccarino, MD**
Professor, Yale School of Medicine
iPS neurons to model neurodevelopmental disorders; FOXG1 in the pathogenesis of autism spectrum disorders and head circumference |
| **Alessandra Renieri, MD, PhD**
Professor, Univ of Siena | **Jeffrey Neul, MD, PhD**
Professor, Univ of California, San Diego | **Antonello Mallamaci, PhD**
Associate Professor, SISSA
Employ CRISPR/Cas9-mediated approach to correct FOXG1 mutations in iPS neurons and animal models, and characterize outcomes | **Robert Cilio, MD, PhD**
Director of Pediatric Epilepsy Research, UCSF
Generate patient-derived iPS cortical neurons to model morphologic and electrophysiologic sequelae of FOXG1 disruption, with special interest in cortical development |
| **Guangping Gao, PhD**
Professor, Univ of Mass. Medical School | **Jeffrey Neul, MD, PhD**
Professor, Univ of California, San Diego | **Antonello Mallamaci, PhD**
Associate Professor, SISSA
Employ CRISPR/Cas9-mediated approach to correct FOXG1 mutations in iPS neurons and animal models, and characterize outcomes | **Robert Cilio, MD, PhD**
Director of Pediatric Epilepsy Research, UCSF
Generate patient-derived iPS cortical neurons to model morphologic and electrophysiologic sequelae of FOXG1 disruption, with special interest in cortical development |
In October of 2014 the National Institute of Health awarded a $29 million five-year grant to study FOXG1 Syndrome, MECP2 Duplication Syndrome, CDKL5 Syndrome and Rett Syndrome.

The goals of this grant are:
- to understand the core clinical features of each disorder
- to identify if there are any treatments that can improve quality of life
- to understand the link between symptoms and brain imaging/eeg variations.
The development of a public clinical database that researchers have access to will be critical for proposal developments. This anonymous database will contain medical and statistical information, compiled by clinicians, such as:

- Type of mutation
- Skill levels
- A listing of symptoms and percentages affected
- Occurrence per country

This project will occur during the same time as the current research projects.
IFF is creating assets to help scientists

- Publically available Foxg1 deletion **mouse models** and well characterized **iPSC lines** for molecular/behavioural research and pre-clinical trials

- **FOXG1** clinics at Boston Children’s Hospital and Stanford Children’s Health to accumulate accurate clinical data

- RETT associated Natural History Study to characterize outcomes across patients lifespan, and to explore possible genotype-phenotype correlations

- Active social network of affected families that can be reached immediately

- Building of public facing clinical and patient derived database
Million dollar question

If we can figure out how to fix the FOXG1 gene or improve its protein level/activity, can new brain cells be formed? (Cells that were not formed due to FOXG1 Syndrome) Can cells re-generate?

Currently this is unknown; we will learn more over next few years through research experiments.
FOXG1 Could Be Linked to Autism and Other Brain Disorders

- Disrupted GABA neurons lead to Autism, Schizophrenia and Epilepsy
- Functional FOXG1 Genes have been shown to regulate the balance of GABA neurons

While FOXG1 Syndrome is a rare condition, its linkage to other disorders may help us attract scientific/biotech focus and investment

Dr. Heather Olson, MD, MS, Children’s Hospital Boston, Assistant in Neurology, Instructor of Neurology, Harvard Medical School.

Dr. Orrin Devinsky, MD. NYU Langone Medical Center, Professor, Department of Neurology, Department of Neurosurgery, Department of Psychiatry, Chief of Service, NYU Epilepsy Service.

Dr. Walter Kaufmann, Ravenel Boykin Curry Chair in Genetic Therapeutics, Professor of Neurology, Greenwood Genetic Center.

Elli Brimble, MSc, MS, CGC, Lucile Packard Children’s Hospital at Stanford has joined us as the foundation’s Genetics Liaison.
Questions? Want to help?

If you have questions about the science of FOXG1 please contact Adam Haar at a.e.haar@gmail.com.

If you have a researcher we should contact, biotech ideas, or want to help fundraise, please contact Nasha Fitter at nasha.fitter@foxg1.org.

It takes millions of dollars to get to clinical trials. Rare diseases like Dravet have been successful through parents working together to raise funds.